ON CLASS SUMS IN p-ADIC GROUP RINGS

SUDARSHAN K. SEHGAL

1. Introduction. In this note we prove that an isomorphism of p-adic group rings of finite p-groups maps class sums onto class sums. For integral group rings this is a well known theorem of Glauberman (see [3; 7]). As an application, we show that any automorphism of the p-adic group ring of a finite p-group of nilpotency class 2 is composed of a group automorphism and a conjugation by a suitable element of the p-adic group algebra. This was proved for integral group rings of finite nilpotent groups of class 2 in [5]. In general this question remains open. We also indicate an extension of a theorem of Passman and Whitcomb. The following notation is used.

\[G \text{ denotes a finite } p\text{-group.} \]
\[Z \text{ denotes the ring of (rational) integers.} \]
\[Z_p \text{ denotes the ring of } p\text{-adic integers.} \]
\[Q_p \text{ denotes the } p\text{-adic number field.} \]
\[K \text{ denotes } Q_p, \text{ the algebraic closure of } Q_p \text{ which contains } A \text{ the field of all algebraic numbers.} \]
\[Z_p(G) \text{ denotes the group ring of } G \text{ with coefficients from } Z_p. \]
\[\{C_i\} \text{ denotes the class sums of } G. \]
\[\{K_i\} \text{ denotes the class sums of } H. \]
\[\{e_i\} \text{ denotes the primitive central idempotents of } Q_p(G). \]
\[h_i, k_i \text{ denotes the number of elements in } i\text{th conjugacy class of } G \text{ and } H \text{ respectively.} \]
\[\{\chi_i\} \text{ denotes the absolutely irreducible characters of } Q_p(G). \]
\[z_i \text{ denotes the degree of } \chi_i. \]

2. Theorem of Glauberman. We state our main theorem.

THEOREM 1. Let \(\theta: Z_p(G) \to Z_p(H) \) be an isomorphism. Then \(\theta(C_i) = \pm K_i \) for all \(i \).

Proof. Replacing \(\theta(G) \) by \(G \) we can assume that \(Z_p(G) = Z_p(H) \). We have to prove that \(C_i = \pm K_i \) for all \(i \). At first we claim that

\[K_i = \sum_j a_{ij} C_j \quad \text{with } a_{ij} \in Z. \]

We know (see [1; p. 236]) that

\[e_i = \frac{z_i}{(G : 1)} \sum \overline{\chi_i(g)} C_v, \quad g_v \in C_v, \]

Received November 3, 1970. This work was supported by N.R.C. Grant No. A-5300.
and that

\(C_t = \sum_i k_i \chi_{e_i}(g_i) \frac{e_i}{e_i} \), \quad g_i \in C_t. \)

By the same token we have

\(K_j = \sum_i k_j \chi_{i}(x_j) \frac{e_i}{e_i} \), \quad x_j \in K_j. \)

Substituting the value of \(e_i \) from (2) in (4) we obtain

\(K_j = \frac{1}{(G : 1)} \sum_{i,j} k_j \chi_{i}(x_j) \chi_{i}(g_i) C_t. \)

Also,

\(K_j = \sum_i a_{j,i} C_t \) for some \(a_{j,i} \in \mathbb{Z}. \)

Comparing (4) and (5) we have

\(a_{j,i} = \frac{1}{(G : 1)} \sum_{i,j} k_j \chi_{i}(x_j) \chi_{i}(g_i). \)

It follows from (7) that \((G : 1) a_{j,i} \) is an algebraic integer. Since the \(p^n \)th cyclotomic polynomial over \(\mathbb{Q}_p \) is irreducible (see [2, p. 212]), by taking trace \(\mathbb{Q}_p(\xi)/\mathbb{Q}_p \) where \(\xi \) is an appropriate root of unity, we get from (7) that \((G : 1) a_{j,i} \) is a rational number and hence a rational integer. But since \(a_{j,i} \) is a \(p \)-adic integer and \((G : 1) \) is a \(p \)-power it follows that \(a_{j,i} \) is a rational integer. Hence (1) is established. Now we use the argument of Glauberman to conclude that \(a_{j,i} = \pm \delta_{j,i} \). This argument consists mainly of assigning a weight

\(w(K_1, \ldots, K_m) = \sum_{i,j} \chi_i(K_j) \chi_j(K_i) \)

to class sums of every group basis \(H \) and observing that

\(w(K_1, \ldots, K_m) = (G : 1) \sum_{i,j} k_j a_{i,j} \geq (G : 1)^2, \)

with equality if and only if for each \(i \) there is exactly one \(j \) such that \(a_{i,j} \neq 0 \) and for that \(j, a_{i,j} = \pm 1 \). Hence the class sums of any group basis \(H \) have weight \((G : 1)^2 \) if and only if they are precisely \(\{ \pm C_i \} \). Reversing the role of \(G \) and \(H \) one obtains that the only class sums of a group basis with weight \((G : 1)^2 \) are precisely \(\{ \pm K_i \} \). It follows therefore that \(\{ \pm C_i \} = \{ \pm K_i \} \).

3. Applications. We state two applications and indicate the proofs briefly as they are well known in the integral case and the proofs in this case are identical.

Theorem 2. Let \(\theta \) be an automorphism of \(\mathbb{Z}_p(G) \), where \(G \) is nilpotent of class 2. Then there exists an automorphism \(\lambda \) of \(G \) and a unit \(\gamma \) of \(\mathbb{Q}_p(G) \) such that

\(\theta(g) = \pm \gamma g \gamma^{-1} \) for all \(g \in G. \)
Proof. As in [5], the Theorem follows from Propositions 1 and 2.

Proposition 1. Let \(\theta \) be an automorphism of \(I(G) \) where \(I \) is an integral domain with field of quotients \(F \). Suppose that \(\theta(C_i) = C_i' \), and that there exists an automorphism \(\sigma \) of \(G \) such that \(\sigma(C_i) = C_i' \), for all \(i \). Then we can find a unit \(\gamma \in F(G) \) such that
\[
\theta(g) = \gamma g \gamma^{-1} \quad \text{for all} \quad g \in G.
\]

Proof. Proposition 1 has been proved for \(Z(G) \) in [5] but the proof is the same for any \(I(G) \). For Proposition 2, the existence of such a \(\sigma \) is proved in [6]. That \(\sigma(C_i) = C_i' \), follows just as in [5].

Passman and Whitcomb [3; 7] proved the next Theorem for \(Z(G) \).

Theorem 3. Let \(\theta: Z_p(G) \to Z_p(H) \) be an isomorphism. Then there exists a \(1 - 1 \) correspondence \(N \to \phi(N) \) between normal subgroups of \(G \) and \(H \). This correspondence satisfies
\[
(1) \quad N_1 \subset N_2 \iff \phi(N_1) \subset \phi(N_2)
\]
\[
(2) \quad (N : 1) = (\phi(N) : 1)
\]
\[
(3) \quad (N_1, N_2) = (\phi(N_1), \phi(N_2)).
\]

Proof. The correspondence is established due to Theorem 1. The proofs of (1) and (2) are trivial, and (3) follows as in [4].

References

University of Alberta,
Edmonton, Alberta