On a Polynomial Identity for $n \times n$ Matrices*

A. GIAMBRUNO

Dipartimento di Matematica, Università di Palermo, 90123 Palermo, Italy

AND

S. K. SEHGAL

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Communicated by Claudio Procesi

Received December 1987

We prove that the polynomial

$$h_k(x_1, \ldots, x_k, y_1, \ldots, y_k) = \sum_{\sigma, \tau \in S_k} (\text{sgn} \tau) x_{\sigma(1)} y_{\tau(1)} \cdots x_{\sigma(k)} y_{\tau(k)}$$

vanishes on $n \times n$ matrices over a commutative ring for $k = 2n$ and for no smaller value of k. © 1989 Academic Press, Inc.

Let C be a commutative ring with 1 and $M_n(C)$ the ring of $n \times n$ matrices over C. If $\{x_1, \ldots, x_k, \ldots\}$ and $\{y_1, \ldots, y_k, \ldots\}$ are two distinct sets of non-commuting variables for each $k \geq 1$ we define the polynomial

$$h_k(x_1, \ldots, x_k, y_1, \ldots, y_k) = \sum_{\sigma, \tau \in S_k} (\text{sgn} \tau) x_{\sigma(1)} y_{\tau(1)} \cdots x_{\sigma(k)} y_{\tau(k)},$$

where S_k is the symmetric group of degree k.

It is clear that, for some k, h_k is a polynomial identity for $M_k(C)$; in fact, since h_k is alternating in the x_i (and also in the y_i), h_{n^2} is an identity for $M_n(C)$.

The purpose of this note is to prove that $2n$ is the smallest value of k for which h_k is a polynomial identity for $M_n(C)$. This answers a question of Formanek.

*: This research is supported by NSERC of Canada and MPI of Italy.
We have the following:

Theorem. \(h_{2n} \) is a polynomial identity for \(M_n(C) \). Moreover if \(h_k \) is a polynomial identity for \(M_n(C) \), then \(k \geq 2n \).

Our approach will be based on a proof of the Amitsur–Levitzki theorem given by Rosset in [1].

Before proceeding to the proof of this theorem we need some preliminaries.

Let \(E \) be the exterior algebra on a \(4n \)-dimensional vector space \(V \) over the field of rational numbers \(\mathbb{Q} \) and let \(\{ v_1, ..., v_{4n} \} \) be a basis of \(V \) over \(\mathbb{Q} \). \(E \) may be viewed as the free algebra on \(V \) modulo the relations \(v_i v_j = -v_j v_i \). We write \(E = E_0 + E_1 \), where \(E_0 \) is the subalgebra generated by \(\mathbb{Q} \) and the monomials in the \(v_i \) of even degree and \(E_1 \) is the space generated by the monomials of odd degree.

In the following proposition we study some properties of the algebra \(M_k(E) \simeq M_k(\mathbb{Q}) \otimes_{\mathbb{Q}} E \).

Proposition. (i) If \(U \in M_k(E_0) \) is such that \(\text{tr}(U) = \text{tr}(U^2) = ... = \text{tr}(U^k) = 0 \), then \(U^k = 0 \).

(ii) If \(U, T \in M_k(E_1) \), then \(\text{tr}(UT) = -\text{tr}(TU) \).

Proof. Since \(E_0 \) is a commutative algebra over \(\mathbb{Q} \), (i) follows from Newton's formulas for symmetric functions (see [1]). To prove (ii), write \(U = \sum A_i w_i, \ T = \sum B_i w_i \), where \(A_i, B_i \in M_k(\mathbb{Q}) \) and the \(w_i \) are monomials in \(E_1 \). Recalling that \(\text{tr} \) is a symmetric bilinear form on \(M_k(\mathbb{Q}) \) and \(w_i w_j = -w_j w_i \), we have

\[
\text{tr}(AB) = \sum \text{tr}(A_i B_j) w_i w_j = - \sum \text{tr}(B_j A_i) w_j w_i = - \text{tr}(BA).
\]

Proof of the Theorem. Since, for \(k > 1 \),

\[
h_k(x_1, ..., x_k, y_1, ..., y_k) = \sum_{i,j=1}^k (-1)^{i+j} x_i y_j h_{k-1}(x_1, ..., x_{i-1}, x_{i+1}, ..., x_k, y_1, ..., y_{j-1}, y_{j+1}, ..., y_k),
\]

to prove the second part of the theorem it is enough to check that \(h_{2n-1} \) is not an identity for \(M_n(C) \). To this end, consider the substitution (double staircase)
Then

\[h_{2n-1}(e_{11}, ..., e_{21}, e_{12}, ..., e_{11}) = \sum e_{ii} \neq 0 \]

and \(h_{2n-1} \) is not an identity for \(M_n(C) \).

For the first part of the proof notice that, since \(h_{2n} \) is multilinear and each monomial has coefficient \(\pm 1 \), it is enough to prove that \(h_{2n} \) vanishes on \(M_n(Q) \) (see [2]).

Let \(A_1, ..., A_{2n}, B_1, ..., B_{2n} \in M_n(Q) \) and let

\[A = \sum_{i=1}^{2n} A_i v_i, \quad B = \sum_{i=1}^{2n} B_i v_{2n+i}. \]

Then \(A, B \in M_n(E_1) \) and

\[(AB)^{2n} = h_{2n}(A_1, ..., A_{2n}, B_1, ..., B_{2n}) v_1 v_{2n+1} v_2 v_{2n+2} \cdots v_{2n} v_{4n}. \]

This last equality can be verified by noticing that \(v_k^2 = 0 \) \((k = 1, ..., 4n) \) and for \(\sigma, \tau \in S_{2n}, \)

\[v_{\sigma(1)} v_{2n+\tau(1)} v_{\sigma(2)} v_{2n+\tau(2)} \cdots v_{\sigma(2n)} v_{2n+\tau(2n)} = (\text{sgn} \, \sigma \tau) v_1 v_{2n+1} v_2 v_{2n+2} \cdots v_{2n} v_{4n}. \]

Take now the matrix

\[D = \begin{pmatrix} AB & 0 \\ 0 & BA \end{pmatrix} \in M_{2n}(E_0). \]

Since for \(i \geq 1, (BA)^i B, A \in M_n(E_1) \), by Proposition (ii), \(\text{tr}((AB)^i) = -\text{tr}((BA)^i) \); thus

\[\text{tr}(D') = \text{tr}((AB)^i) + \text{tr}((BA)^i) = 0. \]

But then Proposition (i) forces \(D^{2n} = 0 \) and so \((AB)^{2n} = 0 \). This last equality is equivalent to \(h_{2n}(A_1, ..., A_{2n}, B_1, ..., B_{2n}) = 0 \). The proof is now complete.

It has come to our attention that a different proof of the above theorem has been announced by Qing Chang.

REFERENCES

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium