MINIMAX PREDICTION DESIGNS, ROBUST AGAINST MISSPECIFIED RESPONSE AND ERROR STRUCTURES

Douglas P. Wiens

April 27, 2017

Abstract blah.

Key words and phrases Replication;

1 Introduction

Some motivation (in these examples from some of my old notes, h is the correlation function and g the variance function):

Example 1: Spatial design. Here, the covariates x will contain information about the physical locations, and observations at different locations are expected to be correlated. The predictions $\hat{Y}(x)$ are obtained by (universal) kriging; this presupposes prior knowledge of, or some model for the covariance function $h(x, x')$ and for $g(x)$. The “classical” spatial design problem, in which the choices of h and g, with $\psi \equiv 0$, are assumed to be exactly correct, is well studied – An experimenter wishing robustness against misspecifications in these choices might seek predictions that minimize $IMSE$ in neighbourhoods of the assumed values; see Wiens (2005).

Example 2: Computer experimentation. In this context x is often viewed as a vector of control variables. Models commonly used are as for those in spatial design, but with $\sigma^2 = 0$, reflecting the deterministic nature of the response. See Santner, Williams & Notz (2003),

Example 3: Model robust design of experiments. Here, $\psi(x)$ is adopted as a convenient method of characterizing the model misspecification. There is a considerable literature on this problem under independence, (Wiens, ...) have recently studied the problem with a variety of choices of correlation functions, but with $\psi \equiv 0$. In any case, the interpretation is again that the estimation is carried out assuming that $E[Y(x)] = f'(x)\theta$ exactly, and that any variation is due solely to the additive errors. The estimate $\hat{\theta}$ is then computed by least squares, and $\hat{Y}(x) = f'(x)\hat{\theta}$. Again however, the experimenter wishes some protection against errors in these assumptions.

1Department of Mathematical and Statistical Sciences; University of Alberta, Edmonton, Alberta, Canada T6G 2G1. e-mail: doug.wiens@ualberta.ca
2 Problem formulation

We consider design problems in 'approximately linear' models, for which the response variable \(Y \) is observed subject to random error at covariates \(x \in \chi \subset \mathbb{R}^q \), for a finite 'design space' \(\chi = \{ x_1, \ldots, x_N \} \). The response has 'approximate' mean \(f'(x) \theta \) for \(p \)-dimensional regressors \(f(x) \) and some unknown parameter \(\theta_{p \times 1} \).

More precisely, we consider a collection \(\{ Y_i = Y(x_i) \}_{i=1}^N \) of r.v.s, satisfying

\[
E[Y(x_i)] = f'(x_i) \theta_{p \times 1} + \psi(x_i), \quad i = 1, \ldots, N, \quad (1)
\]

for a function \(\psi(\cdot) \) quantifying the approximate nature of the experimenter’s, possibly incorrect, model assumption that \(E[Y(x)] = f'(x) \theta \). For identifiability we define

\[
\theta = \arg \min_{\eta} \sum_{x \in \chi} (E[Y(x)] - f'(x) \eta)^2.
\]

Defining \(\psi(x) = E[Y(x)] - f'(x) \theta \) then leads to (1) and to the orthogonality requirement

\[
F' \psi_N = 0_{p \times 1}; \quad (2)
\]

here \(\psi_N \) is the \(N \times 1 \) vector with elements \(\{ \psi(x_i) \}_{i=1}^N \) and \(F \) is the \(N \times p \) matrix with rows \(\{ f'(x_i) \}_{i=1}^N \). We assume that \(F \) has full column rank.

The \(Y_i \) are possibly dependent; with \(Y = (Y_1, \ldots, Y_N)' \) we represent the covariance matrix as

\[
C_N = \text{COV}[Y] \overset{df}{=} (\sigma_{ij})_{i,j=1,\ldots,N}.
\]

The intention is to predict 'future' values of \(\{ Y_i \} \). To this end, for each \(i \) we may observe \(n_i \geq 0 \) copies \(\{ Y_{ik}(x_i) \}_{ik=1}^{n_i} \) distributed in the same manner as \(Y_i \), but observed with i.i.d. measurement error with common variance \(\sigma_\varepsilon^2 \).

We suppose that \(\text{COV}[Y_{ik}, Y_{jl}] = \sigma_{ij} \) and that

\[
\text{COV}[Y_{ik}, Y_{jl}] = \sigma_{ij} + \begin{cases} \sigma_\varepsilon^2, & (i,k) = (j,l), \\ 0, & \text{otherwise}. \end{cases}
\]

It is convenient to express the various parameters in terms of \(\sigma_\varepsilon \). Thus, we impose the bound

\[
\| \psi_N \|^2 \leq \sigma_\varepsilon^2 \alpha_n^2, \quad (3)
\]

where \(\alpha_n^2 \) is possibly dependent on the study size \(n \) and \(\| \cdot \| \) is the Euclidean norm. For an induced matrix norm \(\| \cdot \|_M \) we impose a bound

\[
\| C_N \|_M \leq \sigma_\varepsilon^2 \beta_n^2, \quad (4)
\]
with again a possible dependence of β_n on n, discussed below (see the remark following Theorem 2). A common choice is the spectral radius, which for symmetric matrices is the maximum eigenvalue $\|C_N\|_M = \text{ch}_{\text{max}}(C_N)$. In this case the interpretation is that the variance of linear combinations $\sum_{i=1}^N t_i Y_i$, with $\sum_{i=1}^N t_i^2 = 1$, is bounded by $\sigma^2_{\beta_n}$.

We note that the possible dependence of α_n and β_n on n is only for the asymptotics; for finite n it can be absorbed into ψ_N and C_N.

We define Ψ to be the class of functions $\psi(\cdot)$ satisfying (2) and (3), and C to be the class of positive semi-definite matrices satisfying (4).

Let y be the $n \times 1$ vector of observations with subvectors $\{y_i\}_{n_i>0}$, where, when $n_i > 0$, $y_i = (Y_{i1}, ..., Y_{in_i})'$. Then $n = \sum n_i$ and $E[y] = X_{n \times p} \theta$ for

$$X_{n \times p} = \begin{pmatrix} 1_{n_1} f'(x_1) \\ \vdots \\ 1_{n_N} f'(x_N) \end{pmatrix}_{n_i>0}.$$

The covariances between Y and the data form the matrix

$$C_{N,n} = \text{cov} [Y, y] : N \times n;$$

this has i^{th} row

$$\text{cov} [Y_i, y'] = (\sigma_{i1} 1'_{n_1}, ..., \sigma_{ii} 1'_{n_i}, ..., \sigma_{iN} 1'_{n_N}),$$

with the understanding that if $n_j = 0$ then the j^{th} block is absent.

It is useful to introduce the incidence matrix $E_{N \times n} = (e_{ij})$, with

$$e_{ij} = I \left(\text{the } j^{th} \text{ element of } y \text{ is observed at } x_i \right).$$

An alternate expression is

$$E = \begin{pmatrix} e'_1 \\ \vdots \\ e'_N \end{pmatrix}, \text{ where } e'_i = \begin{cases} 0'_{1 \times n}, & n_i = 0, \\ 0'_{\sum_{j<i} n_j} : 1'_{n_i} : 0'_{\sum_{j>i} n_j}, & n_i > 0. \end{cases}$$

In this notation

$$X = E'F \text{ and } C_{N,n} = C_N E.$$ \hspace{1cm} (5)

The matrix E determines the design: if $\{\xi_i = n_i/n\}$ are the design weights – the proportion of observations made at x_i – then

$$D_\xi \overset{\text{def}}{=} \bigoplus_{i=1}^N \xi_i = n^{-1} EE'.$$

We define the covariance matrix of the data by

$$C_n = \text{cov} [y] : n \times n.$$
This is a block matrix in which most blocks – those corresponding to \(n_i = 0 \) or \(n_j = 0 \) – are typically absent; if \(n_i, n_j > 0 \) the \((i, j)\)th block is

\[
C_{n,ij} = \text{COV}[y_i, y'_j] = \sigma_{ij}^2 1_{n_i} 1'_{n_j} + \begin{cases}
\sigma^2 \delta_{ii}, & i = j, \\
0, & i \neq j.
\end{cases}
\]

Thus

\[
C_n = \sigma^2 \left(E' C_N E + I_n \right) .
\]

(7)

We suppose that the investigator computes estimates and inferences under the assumption that \(\psi \equiv 0 \), so that \(E[Y(x)] = f'(x) \theta \), and the assumption that the true covariance matrix is a particular \(C_{0, N} \) of \(C \).

The investigator seeks a set of linear predictors \(\hat{Y} = L_0 y \) of \(Y = (Y_1, \ldots, Y_N)' \) that are unbiased – \(E[\hat{Y}] = E[Y] \) – and that minimize the prediction mean squared error (pmse), defined as

\[
\text{PMSE} = \sum E \left[(Y_i - \hat{Y}_i)^2 \right] = E \left[\| Y - \hat{Y} \|^2 \right].
\]

The solution to this problem is the universal kriging estimate – see, e.g. Cressie (1993) – given in part (i) in the following theorem. Part (ii) gives the pmse under the general mean/covariance structures discussed above; in part (iii) this pmse is expressed explicitly in terms of the design. In Theorem 2 we give the maximum of this pmse, over \(\Psi \) and \(C \).

Theorem 1 (i) The linear predictors \(\hat{Y} = L_0 y \) minimizing the pmse (under the experimenter’s model assumptions) are given by \(L_0 = L_1 + L_2 \), with

\[
L_1 = F \left(X' C_{0,n}^{-1} X \right)^{-1} X' C_{0,n}^{-1},
\]

\[
L_2 = C_{0,N,n} C_{0,n}^{-1} \left[I_n - X (X' C_{0,n}^{-1} X)^{-1} X' C_{0,n}^{-1} \right];
\]

thus

\[
\hat{Y} = F \hat{\theta}_0 + C_{0,N,n} C_{0,n}^{-1} \left(y - X \hat{\theta}_0 \right),
\]

where \(\hat{\theta}_0 = (X' C_{0,n}^{-1} X)^{-1} X' C_{0,n}^{-1} y \) is the generalized least squares estimator.

(ii) If \(\psi \) and \(\text{COV}[Y] = C_N \) are arbitrary members of \(\Psi \) and \(C \) respectively, then

\[
\text{PMSE} = \| (I_N - L_0 E') \psi_N \|^2 + tr \left\{ (I_N - L_0 E') C_N (I_N - L_0 E')' \right\} + \sigma^2 \| E L_0 \|_2.
\]

(8)

Thus, under the model assumptions, the minimized pmse is

\[
\text{PMSE}_0 = tr \left\{ (I_N - L_0 E') C_{0,N} (I_N - E L_0)' \right\} + \sigma^2 \| L_0 L_0' \|.
\]

\[
\text{PMSE}_0 = tr \left\{ (I_N - L_0 E') C_{0,N} (I_N - E L_0)' \right\} + \sigma^2 \| L_0 L_0' \|.
\]
(iii) Define $V_0 = E \left(C_{0,n}/\sigma_\varepsilon^2 \right)^{-1} E'$; recall (6). Then:

$$V_0 = \sqrt{n} D_{\xi}^{1/2} \left(I_N + n D_{\xi}^{1/2} \frac{C_{0,N}}{\sigma_\varepsilon^2} D_{\xi}^{1/2} \right)^{-1} \sqrt{n} D_{\xi}^{1/2},$$

$$I_N - L_0 E' = \left(I_N + n \frac{C_{0,N}}{\sigma_\varepsilon^2} D_{\xi} \right)^{-1} \left(I_N - F (F' V_0 F)^{-1} F' V_0 \right),$$

$$tr L_0 L_0' = tr \left\{ \left[\frac{C_{0,N}}{\sigma_\varepsilon^2} + \left(I_N + n \frac{C_{0,N}}{\sigma_\varepsilon^2} D_{\xi} \right)^{-1} F (F' V_0 F)^{-1} F' \right] \cdot \sqrt{n} D_{\xi}^{1/2} \left(I_N + n D_{\xi}^{1/2} \frac{C_{0,N}}{\sigma_\varepsilon^2} D_{\xi}^{1/2} \right)^{-2} \sqrt{n} D_{\xi}^{1/2}, \right\}$$

$$\left[\frac{C_{0,N}}{\sigma_\varepsilon^2} + \left(I_N + n \frac{C_{0,N}}{\sigma_\varepsilon^2} D_{\xi} \right)^{-1} F (F' V_0 F)^{-1} F' \right]' \right\}.$$

Note that

$$(I_N - L_0 E') F = 0_{N \times p}.$$

The maximum value of PMSE at (8), over Ψ and C, is developed in the following two lemmas and summarized in Theorem 2. The proof of Lemma 1 is given in the Appendix. Lemma 2 is proved in Welsh and Wiens (2013), but was previously noted in Wiens and Zhou (2008).

Lemma 1 For an $N \times N$ matrix A satisfying $A F = 0_{N \times p}$, the maximum of $\psi_N A' A \psi_N$ over ψ_N, subject to (2) and (3), is

$$\sigma_\varepsilon^2 \alpha_0^2 c_{\text{max}} A A'.$$

Lemma 2 Suppose that $\mathcal{L}(C)$ is a function of positive semi-definite matrices $C_{N \times N}$ which is monotonic with respect to the ordering by positive semi-definiteness, in that $C_1 \geq C_2 \Rightarrow \mathcal{L}(C_1) \geq \mathcal{L}(C_2)$. For any induced matrix norm $\| \cdot \|$, define a class of matrices

$$C = \left\{ C \mid C \text{ positive semi-definite and } \| C \| \leq \tau^2 \right\},$$

and define the class

$$C' = \left\{ C \mid C \text{ positive semi-definite and } 0 \leq C \leq \tau^2 I_N \right\}.$$

Then in all such classes

$$\max_C \mathcal{L}(C) = \max_{C'} \mathcal{L}(C) = \mathcal{L} \left(\tau^2 I_N \right).$$

An implication of Lemma 2 is that the least favourable model of dependence in this problem is in fact independence.

The following is now immediate.
Theorem 2 Recall (10) and (12) and put
\[A_0 = I_N - L_0 E'. \]

Then the maximum, over \(\Psi \) and \(C \), of the PMSE at (8) is \(\sigma^2 (\alpha_n^2 + \beta_n^2) \) times
\[L(\xi) = (1 - \nu) ch_{\max} A_0 A_0' + \nu tr A_0 A_0' + \omega_n tr L_0 L_0', \tag{14} \]
where \(\nu = \beta_n^2 / (\alpha_n^2 + \beta_n^2) \) and \(\omega_n = 1 / (\alpha_n^2 + \beta_n^2) \).

Remark 1: We can now specify the dependence of \(\alpha_n, \beta_n \) on \(n \). These are determined by the requirement that all three components of \(L(\xi) \) be of the same asymptotic order. The designer chooses \(\nu \) and \(\omega_n \) according to the emphasis that he/she wishes to place on the various contributors to PMSE. We consider two cases:

Case 1: no replication In this case, as typically occurs in spatial studies, all \(n_i \in \{0, 1\} \) and so \(nD_\xi = O(1) \). We take (\(\alpha_n, \beta_n \)) = (\(\alpha, \beta \), hence \(nD_\xi, V_0, A_0 = I_N - L_0 E' \) and \(tr L_0 L_0 \) are \(O(1) \), as are \(\nu = \beta^2 / (\alpha^2 + \beta^2) \) and \(\omega_n \). Hence all three components of \(L(\xi) \) are \(O(1) \).

Case 2: replication If the setting allows for unrestricted replications then \(n_i = O(n) \), so that \(D_\xi = O(1) \). We take (\(\alpha_n, \beta_n \)) = (\(\alpha/\sqrt{n}, \beta/\sqrt{n} \)), so that again \(nC_{0,N}/\sigma^2 \) is \(O(1) \). Then \(V_0 = O(n) \), \(A_0 = I_N - L_0 E' \) is \(O(1) \) and \(tr L_0 L_0 \) is \(O(1/n) \). Since \(\nu = \beta^2 / (\alpha^2 + \beta^2) = O(1) \) and \(\omega_n = O(n) \), it is again the case that all three components of \(L(\xi) \) are \(O(1) \).

Remark 2: An alternate class of covariance structures is
\[C_\gamma = \{(1 - \gamma) C_{N,0} + \gamma C_N \mid \| C_N \|_M \leq \sigma^2 (\alpha_n^2 + \beta_n^2) \}, \]
for \(\gamma \in [0, 1] \). For this class the theory above continues to hold, and yields that
\[\max_{\Psi, C_\gamma} \text{PMSE} = \text{PMSE}_0 + \sigma^2 \left[\alpha_n^2 ch_{\max} A_0 A_0' + \gamma tr A_0 \left(\beta_n^2 I_N - \frac{C_{0,N}}{\sigma^2} \right) A_0' \right]. \]

Remark 3: We might restrict to correlation structures which are isotropic, i.e. structures for which \(\text{CORR}[Y(x_1), Y(x_2)] \) depends only on the distance \(\| x_1 - x_2 \| \). In this case the theory above continues to hold, since the maximizing structure \(\tau^2 I_N \) in Lemma 2 is a scale multiple of an isotropic correlation matrix.

In the next section we discuss designs minimizing \(L(\xi) \) given by (14).
3 Computations

Note: The computations involve

\[G_1 = \left(I_N + nD^{1/2}_\xi \frac{C_{0,N}}{\sigma^2_\xi} D^{1/2}_\xi \right)^{-1} \overset{\text{def}}{=} (I_N + S_1)^{-1}, \]
\[G_2 = \left(I_N + n \frac{C_{0,N}}{\sigma^2_\xi} D_\xi \right)^{-1} \overset{\text{def}}{=} (I_N + S_2)^{-1}. \]

Typically \(D_\xi \) is quite sparse; denote by ‘pos’ the locations of the \(N_+ \) non-zero elements (\(N_+ \leq \min(N, n) \)). Let \(J : N \times N_+ \) consist of those columns of \(I_N \) in ‘pos’. Let

\[S_{1+} = S_1 [\text{pos}, \text{pos}] : N_+ \times N_+ \]

consist only of these rows and columns, and let

\[S_{2+} = S_2 [:, \text{pos}] : N \times N_+ \]

consist only of these columns. Then \(J'J = I_{N+} \) and

\[S_1 = JS_{1+}J', \quad S_2 = S_{2+}J'; \]

thus

\[G_1 = (I_N + JS_{1+}J')^{-1} = I_N - J (I_{N_+} + S_{1+})^{-1} S_{1+}J', \]
\[G_2 = (I_N + S_{2+}J')^{-1} = I_N - S_{2+} (I_{N_+} + J'S_{2+})^{-1} J'. \]

These involve only the inversion of matrices of order \(N_+ \); this reduces the computing time substantially.

Appendix: Derivations

Proof of Theorem 1. (i) For notational convenience we temporarily drop the subscript ‘0’. The requirement of unbiasedness is \(E \left[\hat{Y} \right] = L \theta = F \theta = E \left[Y \right] \) for all \(\theta \); this entails \(LX = F \) and so \(L = L_1 + L_2 \), where \(L_1 = F \left(X'C_n^{-1}X \right)^{-1} X'C_n^{-1} \) and

\[L_2X = 0. \] \hspace{1cm} (A.1)

Thus

\[\hat{Y} = F\hat{\theta}_{GLS} + L_2y, \]

where \(\hat{\theta}_{GLS} = \left(X'C_n^{-1}X \right)^{-1} X'C_n^{-1}y \) is unbiased for \(\theta \) and \(E[L_2y] = 0. \)
The PMSE to be minimized is

\[
\text{PMSE} = tr \left\{ \text{COV} \left[Y - \hat{Y} \right] \right\} \\
= tr \text{COV} \left[Y \right] + tr \text{COV} \left[\hat{Y} \right] - 2tr \text{COV} \left[Y, \hat{Y}' \right] \\
= tr C_N + tr L C_n L' - 2tr \text{COV} \left[Y, y' L' \right] \\
= tr C_N + tr F \left(X' C_n^{-1} X \right)^{-1} F' - 2tr C_{N,n} L_1 + \left[tr L_2 C_n L_2' - 2tr C_{N,n} L_2' \right];
\]

here we use that \(L_1 C_n L_1' = L_2 C_n L_1' = 0_{N \times N} \) and that \(L_1 C_n L_1' = F \left(X' C_n^{-1} X \right)^{-1} F' \).

We are now to minimize \(tr L_2 C_n L_2' - 2tr C_{N,n} L_2' \) subject to (A.1). This orthogonality condition, which we now write as \(L_2 C_n^{1/2} C_n^{-1/2} X = 0 \), states that the rows of \(L_2 C_n^{1/2} \) lie in the row space of the orthogonal projector \(I_n - H \), where \(H = C_n^{-1/2} X \left(X' C_n^{-1} X \right)^{-1} X' C_n^{-1/2} \), so that if the rows of \(\Pi : (n - p) \times n \) form an orthogonal basis for this space (so that \(\Pi \Pi' = I_{n - p} \) and \(\Pi' \Pi = I_n - H \)), we have that, for some \(M : N \times (n - p) \), \(L_2 C_n^{1/2} = M \Pi \).

Thus we minimize

\[
tr L_2 C_n L_2' - 2tr C_{N,n} L_2' \\
= tr \left[MM' - C_{N,n} C_n^{-1/2} \Pi' M' - M \Pi C_n^{-1/2} C_n', n \right] \\
= tr \left[\left(M - C_{N,n} C_n^{-1/2} \Pi \right) \left(M' - \Pi' C_n^{-1/2} C_n' \right) - C_{N,n} C_n^{-1/2} \Pi' \Pi C_n^{-1/2} C_n' \right]
\]

over \(A \), unconditionally. The solution is clearly \(M = C_{N,n} C_n^{-1/2} \Pi' \), whence

\[
L_2 = C_{N,n} C_n^{-1} \left[I_n - X \left(X' C_n^{-1} X \right)^{-1} X' C_n^{-1} \right].
\]

(ii) Put \(\psi_n = (1_n', \psi(x_1), \ldots, 1_n' \psi(x_N))' \), so that \(E [Y] = F \theta + \psi_n \),
\(E [y] = X \theta + \psi_n \). Define \(m = E \left[Y - \hat{Y} \right] \), then PMSE = \(\| m \|^2 + tr \text{COV} \left[Y - \hat{Y} \right] \).

Since \(\psi_n = E' \psi_N \) and \(L_0 X = F \), we have that

\[
m = E \left[Y - L_0 y \right] = (I_N - L_0 E') \psi_N.
\]

Furthermore, and using (5) and (7),

\[
tr \text{COV} \left[Y - \hat{Y} \right] = tr \text{COV} \left[Y - L_0 y \right] \\
= tr \left\{ C_N - C_{N,n} L_0 - L_0 C_{N,n} + L_0 C_n L_0' \right\} \\
= tr \left\{ \left(I_N : - L_0 \right) \left[\left(\begin{array}{c} I_N \\ E' \end{array} \right) C_N \left(\begin{array}{c} I_N : E \end{array} \right) \right] \left(\begin{array}{c} I_N \\ - L_0 \end{array} \right) \right\} \\
= tr \left\{ (I_N - L_0 E') C_N (I_N - E L_0') \right\} + \sigma^2 tr L_0 L_0'.
\]
(iii) We repeatedly use standard matrix identities for the inversion of matrices of the form $I - AB$. These identities together with

$$V_0 = E \left(E' \frac{C_{0;N}}{\sigma^2_\xi} E + I_N \right)^{-1} E'$$

and (6) yield (9).

To verify (10) first recall (5), which implies that $X'C_{0;n}^{-1}X = F'V_0F/\sigma^2_\xi$; apply (7) as well to get

$$L_1E' = F (F'V_0F)^{-1} F'V_0,$$
$$L_2E' = \frac{C_{0;N}}{\sigma^2_\xi} V_0 - \frac{C_{0;N}}{\sigma^2_\xi} V_0F (F'V_0F)^{-1} F'V_0,$$

so that, with $L_0 = L_1 + L_2$,

$$I_N - L_0E' = \left[I_N - \frac{C_{0;N}}{\sigma^2_\xi} V_0 \right] \left[I_N - F (F'V_0F)^{-1} F'V_0 \right].$$

Now (10) follows from

$$I_N - \frac{C_{0;N}}{\sigma^2_\xi} V_0 = \left(I_N + n \frac{C_{0;N}}{\sigma^2_\xi} D_\xi \right)^{-1}. \quad (A.2)$$

To obtain (11), first use (7) to verify that

$$E \left(\frac{C_{0;n}}{\sigma^2_\xi} \right)^{-1} = \left(I_N + nD_\xi \frac{C_{0;N}}{\sigma^2_\xi} \right)^{-1} E;$$

from this it follows that

$$L_1 = \left[F (F'V_0F)^{-1} F' \right] \left(I_N + nD_\xi \frac{C_{0;N}}{\sigma^2_\xi} \right)^{-1} E,$$
$$L_2 = \frac{C_{0;N}}{\sigma^2_\xi} \left[I_N - V_0F (F'V_0F)^{-1} F' \right] \left(I_N + nD_\xi \frac{C_{0;N}}{\sigma^2_\xi} \right)^{-1} E,$$

whence

$$L_0 = \left[\frac{C_{0;N}}{\sigma^2_\xi} + \left(I_N + n \frac{C_{0;N}}{\sigma^2_\xi} D_\xi \right)^{-1} F (F'V_0F)^{-1} F \right] \left(I_N + nD_\xi \frac{C_{0;N}}{\sigma^2_\xi} \right)^{-1} E;$$

here we have used (A.2). Then

$$trL_0L_0' = tr \left\{ \left[\frac{C_{0;N}}{\sigma^2_\xi} + \left(I_N + n \frac{C_{0;N}}{\sigma^2_\xi} D_\xi \right)^{-1} F (F'V_0F)^{-1} F \right] \left(I_N + nD_\xi \frac{C_{0;N}}{\sigma^2_\xi} \right)^{-1} \right\},$$

$$\cdot \left[\frac{C_{0;N}}{\sigma^2_\xi} + \left(I_N + n \frac{C_{0;N}}{\sigma^2_\xi} D_\xi \right)^{-1} F (F'V_0F)^{-1} F \right]'.$$
and (11) follows from

\[
\left(I_N + n D_\xi \frac{C_{0:N}}{\sigma_\xi^2} \right)^{-1} n D_\xi \left(I_N + n \frac{C_{0:N}}{\sigma_\xi^2} D_\xi \right)^{-1} = \sqrt{n} D_\xi^{1/2} \left(I_N + n D_\xi^{1/2} \frac{C_{0:N}}{\sigma_\xi^2} D_\xi^{1/2} \right)^{-2} \sqrt{n} D_\xi^{1/2}.
\]

\[\square\]

Proof of Lemma 1: We first classify the solutions to (2). Let \(F = Q_1 R \) be the qr-decomposition of \(F \), so that \(Q_1 : N \times p \) satisfies \(Q_1^t Q_1 = I_p \) and \(R : p \times p \) is upper triangular and non-singular. Augment \(Q_1 \) by \(Q_2 : N \times (N - p) \) in such a way that \(Q = (Q_1; Q_2) \) is an orthogonal matrix. Then the columns of \(Q_2 \) form an orthogonal basis for the orthogonal complement of the column space of \(F \), to which \(N \) belongs by virtue of (2). Thus \(\psi_N = Q_2 c \) for some \(c \in \mathbb{R}^{N-p} \), and we maximize \(\psi_N^t A^t A \psi_N = c^t Q_2^t A^t A Q_2 c \), subject to \(\|\psi_N\| = \|c\| \leq \sigma_\xi \alpha_n \). The maximizing \(c \) is \(\sigma_\xi \alpha_n \) times the unit eigenvector of \(Q_2^t A^t A Q_2 \) corresponding to the maximum eigenvalue \(\chi_{\text{max}} Q_2^t A^t A Q_2 \), and then

\[
\max \psi_N^t A^t A \psi_N = \sigma_\xi^2 \alpha_n^2 \chi_{\text{max}} Q_2^t A^t A Q_2.
\]

Now (13) follows from

\[
\chi_{\text{max}} Q_2^t A^t A Q_2 = \chi_{\text{max}} A Q_2^t A' = \chi_{\text{max}} A (I_N - Q_1 Q_1^t) A' = \chi_{\text{max}} A \left(I_N - F (F' F)^{-1} F' \right) A' = \chi_{\text{max}} A A',
\]

\[\square\]

Notes to myself:

1. Put \(A_0 = C_{0:N,n} C_{0:n}^{-1} \) and \(B_0 = (F - C_{0:N,n} C_{0:n}^{-1} X) (X' C_{0:n}^{-1} X)^{-1} X' C_{0:n}^{-1} \), note that \(B_0 X (X' C_{0:n}^{-1} X)^{-1} X' C_{0:n}^{-1} = B_0 \). In these terms we have that \(L_0 = A_0 + B_0 \) and the error vector decomposes into uncorrelated components

\[
Y - \hat{Y} = (Y - A_0 y) - B_0 y.
\]

Acknowledgements

This work was carried out with the support of the Natural Sciences and Engineering Research Council of Canada.
References

