1. Suppose that \(f(x) \) is differentiable on \((0, \infty)\) and that \(f'(x) \to 0 \) as \(x \to \infty \). Let \(g(x) = f(x + 1) - f(x) \). Show that \(g(x) \to 0 \) as \(x \to \infty \).

2. Let \(f \) be a convex function on a closed interval \([a, b]\).
 (a) Show that \(f \) is bounded on \([a, b]\).
 (b) Show that \(f \) is continuous on \((a, b)\).

3. The moment generating function of a random variable \(X \) is the function of \(t \) defined by \(M_X(t) = E[e^{tX}] \), provided the expectation exists for all \(t \) in a neighbourhood of zero. Assuming that it does, and that \(X \) has a mean \(\mu_X \), show that \(M_X(t) \geq e^{\mu_X} \), so that
 \[
 \mu_X \leq \frac{\log M_X(t)}{t} \quad \text{for } t > 0.
 \]
 Show that this inequality becomes an equality as \(t \to 0 \). Point out where you need to perform a certain interchange of operations in your derivation.

4. Let \(A \) be a \(p \times p \) positive definite matrix. Show that, if \(a \) is any vector with \(||a|| = 1 \), then
 \[
 (a'Aa) (a'A^{-1}a) \geq 1.
 \]
 (Hints: 1. A symmetric matrix is ‘almost’ diagonal. 2. Suppose first that \(A \) is diagonal. Write out the inequality as a statement about expectations, interpreting the squares of the elements of \(a \) as probabilities. (Are they? Why?) 3. Think about Jensen’s Inequality.)

5. Prove the following special case of Slutsky’s Theorem: If \(X_n \xrightarrow{pr} c \) as \(n \to \infty \), and that \(a_n \to a \) (finite) as \(n \to \infty \), where \(\{a_n\} \) is a sequence of constants, then \(a_nX_n \xrightarrow{pr} ac \).

6. Let \(X \) be a r.v. denoting the age of failure of an electrical component, and assume that \(X \) has a d.f. \(F \) with density \(f \). The failure rate is defined as the probability of failure in a finite interval of time, given the age of the component, say \(x \). This is therefore given by
 \[
 P(x \leq X \leq x + h | X \geq x).
 \]
 The hazard rate is defined as the instantaneous failure rate:
 \[
 h(x) = \lim_{h \to 0} \frac{P(x \leq X \leq x + h | X \geq x)}{h}.
 \]
(a) Show that
\[h(x) = \frac{f(x)}{1 - F(x)}. \]

(b) Show that \(X \) has a constant hazard rate iff it has an exponential distribution (i.e. \(f(x) = \lambda e^{-\lambda x} \) for some \(\lambda \)).

7. Prove: If \(f(x) \) is strictly increasing, twice differentiable, and convex on \([a, \infty)\) then it is unbounded.

8. In the theory of robust estimation in Statistics, one encounters the differential equation
\[2\psi'(x) - \psi^2(x) = -\lambda^2, \]
where \(\lambda \) is a positive constant. There are several solutions to this equation – \(\psi(x) = \lambda \) is an obvious one. Without actually solving the equation, show that if \(\psi(x) \) is any bounded solution, then \(\psi(x) \leq \lambda \) for all \(x \).

9. Show that, if an angle \(\theta \) is uniformly distributed over \((-\pi/2, \pi/2)\), then \(Y = \tan \theta \) has the Cauchy distribution, with density \(f_Y(y) = 1/[\pi (1 + y^2)] \), \(-\infty < y < \infty\). (This is also known as “Student’s” t-distribution on 1 degree of freedom.)

10. (a) Prove: If \(h(x) > 0 \) for all \(x \), then \(h(x) \) is maximized at \(x_0 \) if and only if \(\log h(x) \) is maximized at \(x_0 \).

(b) Suppose that a random sample \(x = (x_1, ..., x_n) \) has a density, depending on an unknown parameter \(\sigma^2 \), of the form
\[f(x; \sigma^2) = h(t; \sigma^2) g(x), \quad \text{for} \]
\[h(t; \sigma^2) = \frac{n^{-1} (\frac{(n-1)\sigma^2}{2\sigma^2})^{\frac{n-1}{2}} \exp\{-\frac{(n-1)t}{2\sigma^2}\}}{\Gamma\left(\frac{n-1}{2}\right)}, \quad 0 < t < \infty. \]

Here \(t \) is the value of a random variable \(T = T(x) \) computed from the sample, and \(g(\cdot) \) does not depend upon the parameter. If we observe the value of \(T \) then we can compute an estimate of \(\sigma^2 \). This estimate, called the Maximum Likelihood Estimate (MLE), is the value of \(\sigma^2 \) which maximizes \(h(t; \sigma^2) \), hence \(f(x; \sigma^2) \). Obtain the MLE. That is, if \(t \) is observed, what is the estimate of \(\sigma^2 \)? [Note: In the sampling situation in which this problem arises, \(T \) is a ‘sufficient statistic’ for \(\sigma^2 \) and contains all the information in the sample about that parameter, through its density \(h(t; \sigma^2) \).]